Cell phone radiation may cause tissue damage

Cell phones communicate via electromagnetic waves. During signal transmission, a comparable amount of radiation travels outward, towards the base station, and inward, towards the ear or head of the cell phone user. (IEGMP 2000).

Cell phone waves are in the “radiofrequency” range. They lack the penetrating energy of X-rays and radioactivity. Scientists are still exploring how cell phone radiation may cause the harmful effects that some studies have described.

Scientific research conducted over the past decade has associated cell phone radiation with increased risk of developing brain and salivary gland tumors, neurological symptoms such as migraine and vertigo, and neurodevelopmental effects observed as behavioral problems in young children (BioInitiative 2007; Divan 2008; Kundi 2009; Sadetzki 2008; Schuz 2009).

The National Research Council has reported that exposure to cell phone radiation may affect the immune, endocrine and nervous systems, fetal development and overall metabolism (NRC 2008b). Children are likely to be more susceptible than adults to effects from cell phone radiation, since the brain of a child is still developing and its nervous tissues absorb a greater portion of incoming radiation compared to that of an adult (Gandhi 1996; Kang 2002; Kheifets 2005; Schuz 2005; Wang 2003; Wiart 2008).
FCC industry radiation standards have little margin of safety

The FCC’s cell phone radiation standards closely follow the recommendations of the Institute of Electrical and Electronics Engineers (IEEE) (FCC 1997). These standards allow 20 times more radiation to penetrate the head than the rest of the body and do not account for risks to children.

FCC standards limit the radiation absorbed by a cell phone user’s brain and body to a specific absorption rate, or SAR, measured by the amount of the phone’s radiation energy (in watts, W) absorbed per kilogram of tissue (W/kg).

Current FCC regulations permit SAR levels of up to 1.6 W/kg for partial body (head) exposure, 0.08 W/kg for whole-body exposure, and 4 W/kg for exposure to the hands, wrists, feet and ankles (FCC 1997, 1999).

The FCC standards are based on animal studies conducted in late 1970s and early 1980s (Osepchuk 2003). FCC, on the recommendation of the IEEE, adopted SAR level of 4 W/kg as the point of departure for determining legal SAR limits for cell phones. In contrast to the FCC decision, an independent analysis by the EPA scientists concluded, on the basis of the same body of data, that biological effects occur at SAR levels of 1 W/kg, 4 times lower than the SAR level chosen by IEEE (U.S. EPA 1984). Exposure to radiofrequency radiation at these SAR levels induces tissue heating that leads to behavioral alterations in mice, rats, and monkeys, that may be a “potentially adverse effect in human beings” (IEEE 2006).

Be the first to comment

Leave a Reply

Your email address will not be published.


*